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Abstract 

The paper presents the universal kriging method applied in calibration of multiparameter transducers. If a 
measured transducer characteristic is not within an assumed error margin, it is necessary to perform calibration
to establish its individual transfer function. The universal kriging method may be then applied in order to evade
repeating the measurements for every considered transducer, thus saving significant amounts of time. 
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1. Introduction 

 
The transducer manufacturing process can influence its key metrological parameters. 

Therefore performing calibration of each transducer is a necessity. In case of one-parameter 
transducers it is relatively easy even in those with a non-linear transfer function. However, 
performing calibration for a multi-parameter transducer is a far more complicated problem. 
Commonly used methods apply to narrow ranges of transducers, an example of which can be 
found in [3] − a review of calibrating methods for spectroscopy. A calibration method 
incorporating multiple influencing parameters with the use of the Gauss approximating 
function can be found in [5]. Another method for gas flow transducer calibration is described 
in [8]. Also, some aspects of complex measurements are discussed in [14]. 

The paper presents a calibration method for multiparameter transducers. The method is 
based on the assumption that for at least one transducer from the batch the transfer function 
has already been established. A correction function for the others is found using the universal 
kriging method. 

  
2. Kriging method 
 

In universal kriging it is assumed that the unknown function values are expressed by a 
combination of two components: a deterministic, where value depends on the position and a 
stochastic, with a constant average and fulfilling the condition of second-degree stationarity: 

 
 F(s) = g(s) + Z(s), (1) 
where: 
− g(s) – deterministic component; 
− Z(s) – stochastic component. 

From a formal point of view, universal kriging is, similarly to pointwise kriging, 
considered to be a random function F(s) defined in a space S, where  s(x, y,…,z) are the 
coordinates in this space. The discrete values of F(s) are known in si (1 ≤ i ≤ n) nodes, where 
n is the number of nodes in space S. It is assumed that only the points in the vicinity of a point 



sp influence the F(s) value. The area containing those adjoining nodes is called the influence 
or interpolation area. 

Various function types are used to describe the deterministic component. Polynomials with 
monomials, orthogonal polynomials, sine functions as basis are widely used. In case of a 
transducer mathematical model, its function is either strictly ascending or descending, 
therefore, with some exceptions, polynomial functions are preferred as the deterministic 
component. Hence the deterministic component can be expressed as a linear combination of 
m known functions with weight coefficients of ak: 
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The assumption that the average value of the stochastic component equals zero is 
acceptable and does not change the universality of considerations . It can be achieved by 
normalizing the measurement data. Then we will have:  

 
 E[Z(s)] = 0. (3) 
 
The average value of the entire function will be expressed by:  
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and the covariance of the stochastic component will be as follows:  
 

 E[(F(s1) – g(s1))(F(s2) – g(s2))] = E[Z(s1)Z(s2)] = Cov(s1 – s2). (5) 
 
Generally, as in simple kriging [2, 19] the expected value of the F(s) function in sp can be 

derived from the expression:  

 
n

p i i
i 1

F̂(s ) ω F(s ),
=

= ∑  (6) 

where:  
− F(si) − function values in nodes si (i = 1, 2, …, n); 
− n −  number of nodes; 
− ωI −  weights corresponding to nodes. 

The weights ωI are derived from the process of finding an unbiased estimator with the 
minimal error between the real and expected value. The unbiased conditions are when: 
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Taking into account the above expressions, one can write:  
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and inserting (2) into (8) we get: 
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To satisfy equation (9) we have a sequence of conditions:  
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Basically, to find the ωi weights, the following variance is minimized: 
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Expanding (11) gives: 
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If the covariance with distance h between particular points s is inserted into expression 
(12), one can get:  
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where:  
− hij – Euclidean distance between points si, sj;  
− hi – Euclidean distance between points si, sp. 

The minimization of expression (13)  in relation to ωi, is carried out by incorporation of 
Lagrange coefficients µr as it is in the case of ordinary kriging. It results in (k+n) linear 
equations with (k+n) unknowns. Basing on the analysis carried out in [15] the covariances in 
(13) can be substituted by γ(h) semivariances. This results in the following set of equations: 
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where, similarly like in ordinary kriging: 
− γ(hij) – semivariance in points si and sj. 
− γ(hi) – semivariance in points si and sp. 
− µk – Lagrange coefficients. 

The weight coefficients ω obtained as a solution to equations (14) and (15), are used in (6) 
- to predict the function value in selected point sp as well as in (13) – to determine the 
variance. When random variables have a Gauss distribution, the points of prediction are in the 
following interval : 
 sppspp 1.96σ)(sF̂,1.96σ)(sF̂ +−  (16) 
 

with a confidence level of 95%. 
Assuming that f1 = 1, and the other functions f2, … fm = 0, we get a set of equations for 

ordinary kriging. 
The set of equations (14) and (15) can be expressed in matrix syntax: 
 

 Gc = g, (17) 
 

where: 
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 c = [ω1   ω2 …  ωn   µ1   µ2 ...  µm]T (19) 
 

or 
µ
ω

=c , (20) 

 

where: ω = [ω1   ω2…ωn]T, µ = [µ1   µ2…µm]T 

 

 g = [γ(h1)   …   γ(hn)   f0(sp)   …   fm(sp)]T (21) 
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where: γ(h) = [γ(h1)   γ(h2)…γ(hn)]T, f(sp) = [f0(sp)   f2(sp)…fm(sp)]T. 
Expressions (18) to (20) can be expressed as: 
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Just as in case of ordinary kriging, in universal kriging some of the random function 

distribution semivariogram models [16, 18] can be applied for semivariance computing. The 
most often used models are Gauss, exponential, spatial and power function distribution. The 
model is selected basing on experimentally validated ones, alternatively suitable tests should 
be performed on measurement data in order to determine the proper model of the 
semivariogram. 

The c vector of ω weights and  Lagrange coefficients µ  is  derived from the expression: 
 

 c = G-1g. (25) 
 

After calculating (21) and determination of weights ω, the expected value in point  sp and 
the variance can be determined from the following: 
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3. Experimental design 
 

The universal kriging method was applied to calculate corrective polynomials for gas flow 
transducers [6, 7]. The transducer range of measurements was 0.04 - 0.8 m3/h. The transducer 
contained a pneumatic resistance and the Q value was calculated from the dependence (27) 
basing on the pressure drop on the pneumatic resistor dP with regard to the temperature Ta 
and the absolute pressure Pa: 
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where:  
− Q − value of flow [m3/h]; 
− T0 − reference temperature 273.15 [K]; 
− P0 − reference absolute pressure 100 kPa; 
− Ta − temperature of measurement [K]; 
− Pa − pressure of measurement [kPa]; 
− η(T0) − gas viscosity coefficient at reference temperature;  
− η(Ta) − gas viscosity coefficient at  temperature of measurement; 
− dP − pressure drop on the pneumatic resistor; 
− ai − coefficients. 

The ai coefficients in expression (27) were calculated for a particular transducer, Table1.  
 
                                  Table 1. Values of  the coefficients ai in expression (27). 

a2 a1 a0 
286.44 68.654 2.631 

 
Basing on measurement data, the dQ between the real Qr and Q value was calculated for all 

others using the expression (27). Values of  the coefficients dP, Pa, i Ta were taken from the 
range: dP {0 – 250 Pa}, Pa {100 – 120 kPa}, Ta {273.15 – 308.15 K}.  Table 2  presents 
measurement values of the parameters, randomly determined. For dP, Pa and Ta values, as 
corrective function the expression (28) was chosen.  

 
Table 2. Measured values of the parameters dp, Pa, Ta, and dQ. 

No Pa  
[kPa] 

Ta  
[k] 

dP  
[Pa] 

dQ  
[m3/h] 

No Pa  
[kPa] 

Ta  
[k] 

dP  
[Pa] 

dQ  
[m3/h] 

1. 118.7 300.4 132.6 0.0252 10. 119.2 276.8 110.6 0.0198 
2. 109.4 293.0 32.4 0.0064 11. 116.3 300.2 1.1 0.0021 
3. 103.2 284.9 2.9 0.0028 12. 108.0 276.1 217.1 0.0525 
4. 110.6 284.0 198.5 0.0425 13. 108.6 301.1 64.9 0.0103 
5. 105.3 294.2 41.4 0.0079 14. 105.2 279.5 227.6 0.0538 
6. 115.0 297.2 163.5 0.0323 15. 117.3 277.9 36.3 0.0068 
7. 104.6 276.0 112.6 0.0259 16. 102.8 292.3 144.9 0.0235 
8. 116.5 278.4 228. 0.0574 17. 107.0 294.9 213.2 0.0507 
9. 101.5 308.0 134.5 0.0240 18. 101.5 287.2 128.3 0.0219 

 
With a deterministic function the semivariance functions (18) were determined and the αI 

coefficients αI , βi and γi for the other transducers were computed using expressions (23), (24) 
and (25). 
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Values of  the coefficients αi, βi and γi are presented in Table 3. 
 

               Table 3. Values of  the coefficients αI, βi, γi in expression (28). 

i αi βi γi 
0 3.251e-5 1.102e-5 -1.348e-7 
1 1.437e-6 4.278e-7 -5.372e-9 
2 5.635e-9 1.682e-9 -2.144e-11 

 
The test of the volume flow meter show the errors of the measurements less then 0.8%. 
The sensitivity of the above method for the measurement errors of the parameters Pa, Ta 

and dP was tested in a simulation manner. The values of the parameters were randomly 
changed in the range ± 1% and once more the function (28) was determined. Comparison of 
the values obtained from both functions show differences less then 0.6%. This indicates that 
for normal distribution of the measurement errors, they are averaged.  

The most challenging problem was to find the corrective function (28). It was achieved 
using the method of successive approximations. However, after it was found at last, a set of 
18 measurements distributed in the whole measurement space was enough to determine the 
αi, βi i γi coefficients. The corrective function format is the same for all the transducers. 

The above example shows that the above method is very efficient. This results from the 
fact that the transfer function of the transducer is smooth and strictly ascending or strictly 
descending.  
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